.fread <- function(x, ...) {
.cmd <- ifelse(str_ends(x, "gz"), "gzip -cd ", "cat")
fread(cmd = .cmd %&% " " %&% x %&% "| sed 's/ / NA /g'", ...)
}
.ggplot <- function(...) {
ggplot(...) +
theme_bw() +
ggplot2::theme(plot.background = element_blank(),
plot.margin = unit(c(0,.5,0,.5), 'lines'),
strip.background = element_blank(),
strip.text = element_text(size=6),
legend.background = element_blank(),
legend.text = element_text(size = 8),
legend.title = element_text(size = 8),
axis.title = element_text(size = 8),
legend.key.width = unit(1, 'lines'),
legend.key.height = unit(.2, 'lines'),
legend.key.size = unit(1, 'lines'),
axis.line = element_line(color = 'gray20', size = .5),
axis.text = element_text(size = 6))
}
.read.v4 <- function(hdr) {
.files <- list.files(hdr %&% "/summary/",
pattern = "eval.gz", full.names=TRUE)
.ct <- c("character","character","character",
"character","character", "integer",
"double","double","double",
"double","double","double",
"double","double","double",
"double","double")
.dat <- lapply(.files, .fread, header=TRUE, fill=TRUE,
colClasses = .ct)
.dat <- .dat %>%
do.call(what=rbind) %>%
mutate(p1 = as.numeric("0." %&% p1)) %>%
mutate(pa = as.numeric("0." %&% pa)) %>%
mutate(pf = as.numeric("0." %&% pf)) %>%
mutate(p0 = as.numeric("0." %&% p0))
}
.read.named.v4 <- function(x) {
xx <-
str_remove(x, "sim_v4_") %>%
str_remove_all("[NMS]") %>%
str_split("[_B]") %>%
unlist %>%
as.integer
names(xx) <- c("N","M","S","B")
ret <- .read.v4(x) %>% as.data.table
ret[, N := xx[1]]
ret[, M := xx[2]]
ret[, S := xx[3]]
ret[, B := xx[4]]
return(ret)
}
.file <- ".simulation.v4.rdata"
if(!file.exists(.file)) {
result.dt <-
list.files(".", "sim_v4") %>%
lapply(FUN=.read.named.v4) %>%
do.call(what=rbind)
save(list="result.dt", file=.file)
} else {
load(.file)
}
result.dt[, p1.lab := "Variance Caused by Disease: " %&% (p1*100) %&% "%"]
result.dt[, nind := as.factor(N)]
result.dt[, ncell.per.ind := factor(M, c(50, 20), c(50, 20) %&% " cells per individual")]
.method <- c("cocoa", "mu", "avg", "tot", "MAST", "cf")
.method.lab <- c("CoCoA", "Bayesian", "Mean", "Total", "MAST", "Confounder")
result.dt[, method := factor(method, .method, .method.lab)]
1. Sample size
plot.sample.size <- function(.dt) {
.ggplot(.dt, aes(x = nind, y = auprc, fill=method)) +
facet_grid(ncell.per.ind ~ p1.lab) +
geom_boxplot(size=.3, outlier.size=0, outlier.stroke=0) +
scale_fill_brewer("", palette = "Paired") +
theme(legend.position = c(0, 1), legend.justification = c(0, 1)) +
ylab("AUPRC") + xlab("Number of individuals")
}
#' Unconfounded simulation
plot.conf <- function(){
.p0 <- .5
.pf <- .0
.dt <- result.dt[p1 > 0 & pf == .pf & p0 == .p0 & S == 5]
return(plot.sample.size(.dt))
}
#' Violating ignorability assumption
plot.violating <- function(){
.p0 <- .5
.pf <- .1
.dt <- result.dt[p1 > 0 & pf == .pf & p0 == .p0 & S == 5]
return(plot.sample.size(.dt))
}
When the disease label and other covariates are confounded and the conditional ignorability holds
plt <- plot.conf()
print(plt)
.file <- fig.dir %&% "/Fig_Size_Conf.pdf"
.gg.save(.file, plot=plt, width=6, height=4)
PDF
When the disease label and other covariates are confounded and the ignorability assumption breaks down
plt <- plot.violating()
print(plt)
.file <- fig.dir %&% "/Fig_Size_Viol.pdf"
.gg.save(.file, plot=plt, width=6, height=4)
PDF