.fread <- function(x, ...) {
.cmd <- ifelse(str_ends(x, "gz"), "gzip -cd ", "cat")
fread(cmd = .cmd %&% " " %&% x %&% "| sed 's/ / NA /g'", ...)
}
.ggplot <- function(...) {
ggplot(...) +
theme_bw() +
ggplot2::theme(plot.background = element_blank(),
plot.margin = unit(c(0,.5,0,.5), 'lines'),
strip.background = element_blank(),
strip.text = element_text(size=6),
legend.background = element_blank(),
legend.text = element_text(size = 8),
legend.title = element_text(size = 8),
axis.title = element_text(size = 8),
legend.key.width = unit(1, 'lines'),
legend.key.height = unit(.2, 'lines'),
legend.key.size = unit(1, 'lines'),
axis.line = element_line(color = 'gray20', size = .5),
axis.text = element_text(size = 6))
}
.read.v4 <- function(hdr) {
.files <- list.files(hdr %&% "/summary/",
pattern = "eval.gz", full.names=TRUE)
.ct <- c("character","character","character",
"character","character", "integer",
"double","double","double",
"double","double","double",
"double","double","double",
"double","double")
.dat <- lapply(.files, .fread, header=TRUE, fill=TRUE,
colClasses = .ct)
.dat <- .dat %>%
do.call(what=rbind) %>%
mutate(p1 = as.numeric("0." %&% p1)) %>%
mutate(pa = as.numeric("0." %&% pa)) %>%
mutate(pf = as.numeric("0." %&% pf)) %>%
mutate(p0 = as.numeric("0." %&% p0))
}
.read.named.v4 <- function(x) {
xx <-
str_remove(x, "sim_v4_") %>%
str_remove_all("[NMS]") %>%
str_split("[_B]") %>%
unlist %>%
as.integer
names(xx) <- c("N","M","S","B")
ret <- .read.v4(x) %>% as.data.table
ret[, N := xx[1]]
ret[, M := xx[2]]
ret[, S := xx[3]]
ret[, B := xx[4]]
return(ret)
}
.file <- ".simulation.v4.rdata"
if(!file.exists(.file)) {
result.dt <-
list.files(".", "sim_v4") %>%
lapply(FUN=.read.named.v4) %>%
do.call(what=rbind)
save(list="result.dt", file=.file)
} else {
load(.file)
}
result.dt[, p1.lab := "Variance Caused by Disease: " %&% (p1*100) %&% "%"]
result.dt[, ncell.per.ind := factor(M, c(50, 20), c(50, 20) %&% " cells per individual")]
.method <- c("cocoa", "mu", "avg", "tot", "MAST", "cf")
.method.lab <- c("CoCoA", "Bayesian", "Mean", "Total", "MAST", "Confounder")
result.dt[, method := factor(method, .method, .method.lab)]
result.dt[, p1.lab := paste("Var. by Causal ", p1*100, "%")]
result.dt[, ncell.per.ind := factor(M, c(50, 20), c(50, 20) %&% " cells per individual")]
1. Total discovery rate when there were no causal gene
plot.edr <- function(.p0){
.dt <- result.dt[p1 == 0 & pf == 0 & p0 == .p0]
.aes <- aes(x = method, y = edr01, fill = method)
.title <- "Variation by Confounding Effect = " %&% (100 * .p0) %&% "%"
.ggplot(.dt, .aes) +
ylab("Total Discovery Rate") +
xlab("Methods") +
ggtitle(.title) +
facet_grid(ncell.per.ind ~ N) +
scale_y_sqrt(breaks = c(1e-2, 0.1, 0.2, 0.5)) +
scale_fill_brewer(palette="Paired") +
scale_colour_brewer(palette="Paired") +
theme(legend.position = "none") +
theme(axis.text.x = element_text(angle=90, vjust=0, hjust=1)) +
geom_hline(yintercept = .1, lty = 2, colour = 2, size = .5) +
geom_hline(yintercept = .01, lty = 2, colour = 2, size = .5) +
geom_jitter(height = 0, stroke = .1, pch = 21, size = 2, width = .1)
}
plt <- plot.edr(0)
print(plt)
.file <- fig.dir %&% "/Fig_FDR_NoCausal_Conf0.pdf"
.gg.save(.file, plt, width = 8, height = 5)
PDF
plt <- plot.edr(.5)
print(plt)
.file <- fig.dir %&% "/Fig_FDR_NoCausal_Conf50.pdf"
.gg.save(.file, plt, width = 8, height = 5)
PDF
2. Empirical False Discovery Rate adjusted by the qvalue
method
plot.efdr <- function(.p1, .p0 = .5, .pf = 0) {
.title <-
"Variation by Disease Effect = " %&% (100 * .p1) %&% "%\n" %&%
"Variation by Confounding Effect = " %&% (100 * .p0) %&% "%"
.dt <- result.dt[p1 == .p1 & p0 == .p0 & pf == .pf]
.aes <- aes(x = method, y = efdr01, fill = method)
.ggplot(.dt, .aes) +
ggtitle(.title) +
ylab("Empirical FDR (when q-value < .01)") +
xlab("Methods") +
facet_grid(ncell.per.ind ~ N) +
scale_y_sqrt(breaks = c(1e-2, 0.1, 0.2, 0.5)) +
scale_fill_brewer(palette="Paired") +
scale_colour_brewer(palette="Paired") +
theme(legend.position = "none") +
theme(axis.text.x = element_text(angle=90, vjust=0, hjust=1)) +
geom_hline(yintercept = .1, lty = 2, colour = 2, size = .2) +
geom_hline(yintercept = .01, lty = 2, colour = 2, size = .2) +
geom_jitter(height = 0, stroke = .1, pch = 21, size = 2, width = .2)
}
When there were no effects that may confound gene expressions with disease labels
plt <- plot.efdr(.p1 = .1, .p0 = 0, .pf = 0)
print(plt)
.file <- fig.dir %&% "/Fig_FDR_Disease10_Conf0.pdf"
.gg.save(.file, plt, width = 8, height = 5)
PDF
plt <- plot.efdr(.p1 = .3, .p0 = 0, .pf = 0)
print(plt)
.file <- fig.dir %&% "/Fig_FDR_Disease30_Conf0.pdf"
.gg.save(.file, plt, width = 8, height = 5)
PDF
When there were effects confounding expressions with disease labels
plt <- plot.efdr(.p1 = .1, .p0 = .5, .pf = 0)
print(plt)
.file <- fig.dir %&% "/Fig_FDR_Disease10_Conf50.pdf"
.gg.save(.file, plt, width = 8, height = 5)
PDF
plt <- plot.efdr(.p1 = .3, .p0 = .5, .pf = 0)
print(plt)
.file <- fig.dir %&% "/Fig_FDR_Disease30_Conf50.pdf"
.gg.save(.file, plt, width = 8, height = 5)
PDF
When sequential ignorability breaks down, but there were no confounder
plt <- plot.efdr(.p1 = .1, .p0 = 0, .pf = .1)
print(plt)
.file <- fig.dir %&% "/Fig_FDR_Disease10_Conf0_Violating.pdf"
.gg.save(.file, plt, width = 8, height = 5)
PDF
plt <- plot.efdr(.p1 = .3, .p0 = 0, .pf = .1)
print(plt)
.file <- fig.dir %&% "/Fig_FDR_Disease30_Conf0_Violating.pdf"
.gg.save(.file, plt, width = 8, height = 5)
PDF
When sequential ignorability breaks down and there were strong confounding effects
plt <- plot.efdr(.p1 = .1, .p0 = .5, .pf = .1)
print(plt)
.file <- fig.dir %&% "/Fig_FDR_Disease10_Conf50_Violating.pdf"
.gg.save(.file, plt, width = 8, height = 5)
PDF
plt <- plot.efdr(.p1 = .3, .p0 = .5, .pf = .1)
print(plt)
.file <- fig.dir %&% "/Fig_FDR_Disease30_Conf50_Violating.pdf"
.gg.save(.file, plt, width = 8, height = 5)
PDF